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Dissociation energies for a two-term inverse power type of interatomic pair potential have been 
calculated for several metals by considering all interatomic interactions in the solid and using the 
experimental values of the cohesive energies. The results are then employed to calculate the ratio of 
thermal expansion coefficients and heat capacities of metals. It is found that the calculated values are 
in much better agreement with the experimental observations compared to an earlier work. 

I. Introduction So far the dissociation energies, Do, of 

Various models have been proposed for Eq. (1) have not been calculated accurately 

the interatomic pair potential energy func- for metals. It is usually assumed that they 

tion 4(r). At the present time one of the can be obtained using the well-known equa- 

most frequently used models for nonpolar tion (4) 

atoms is that studied by Mie (Z), Grtineisen 
(2), and Ftirth (3), given by 

s 
Do= NW (2) 

4(r) = (1) where AH, is the heat of sublimation of the 
metal, N is the number of atoms, and W is 

where Do is the dissociation energy and r. is the coordination number of atoms in the 

the equilibrium interatomic separation at metal. 

which #J(r) is a minimum. m and n are di- Equation (2) considers only the nearest 

mensionless constants whose values have neighbor interactions among the atoms of 

been obtained for a variety of elements by the solid. In this paper, we have recalcu- 

Ftirth (3). lated the values of Do by considering not 
only the nearest neighbor interactions but 
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solid. The results indicate that significant 
errors are introduced when interactions be- 
yond the nearest neighbors are neglected. 
With the complete interatomic potential en- 
ergy functions obtained in this way, we de- 
cided to recalculate the ratio of the linear 
thermal expansion coefficient, (Y, and the 
heat capacity at constant pressure, C,,, for 
different metals as studied by McLachlan 
and Foster (4). This ratio, a/C,,, is expected 
to be a constant, independent of tempera- 
ture, for a given metallic solid. Our results 
turn out to be in fair agreement with the 
experimental observations. 

During the course of this study, we also 
discovered a serious error in the results ob- 
tained by McLachlan and Foster (4). Their 
values, after correction, are found to be far 
from the experimental values. 

II. Theory 

We shall first derive an expression for Do 
of Eq. (1) by considering the interactions of 
all atoms in the solid. 

We rewrite Eq. (1) for a pair of atoms i 
and j of the solid in terms of the nearest 
neighbor distance, R, as 

where the distance between atom i and 
atomj has been expressed as pi$?. The total 
interaction energy of the solid, U, is then 
given by 

DdrmNo 
U=2(n-m) 

[ - ff Qrn + 2 ($1 (3) 

where No is the number of atoms in the 
solid and is taken to be equal to Avogadro’s 
number as we are considering one mole of 

the solid. The factor t appears to avoid 
counting each pair of atoms twice. S, and 
S, are the lattice sums given by 

s, = c pii” and s, = c pij”. 
j j 

At absolute zero temperature, i.e., the 
minimum of potential energy, we have 

au 
aR R=Ra = 

0 

where R. is the equilibrium nearest neigh- 
bor distance of atoms in the solid. This 
gives 

The total potential energy of the solid at 
0°K is then given by 

u O”K=U I R=Ro 

The cohesive energy, AH’{‘, the zero- 
point energy, 8 N&J&,, and the potential 
energy at absolute zero, UooK, are related by 
(5) 

where ka and f3n are the Boltzmann con- 
stant and the Debye temperature of the 
solid, respectively. Therefore, we obtain 

Do = No&, 2 [ Ati;’ + f NokBOO] 

s ni(n-m) 
( 1 
2 
s, . (6) 

We shall now derive an expression for a/ 
C,. From Eq. (3) the potential energy of the 
solid per atom per degree of freedom, U, 
will be given by 

U Donm 
’ = G = 6(n - m) 

[ -2(S)” +yg]. (7) 
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Letting AR = R - R. and using Eq. (4) we 
obtain 

DgmS,, 
’ = 6(n - m) 

($)n’(- [ - 4 (1 + A!$” 

+ ; (1 + g-1. 

Since AR/R0 4 1 we may expand (1 + AR/ 
R,,-m and (1 + AR/R&“, neglecting terms 
higher than the cubic power of AR/R&o ob- 
tain 

(n + m + 3) ($I$)‘. 

The average value of AR is calculated us- 

ing the Boltzmann distribution function 

I +m AR exp(-ulkaT) d(AR) 
a = -+_ 

I ew(- hJ) &W __ 

to obtain (4, 6) 

AR -= 
Ro 

n + m + 3 S, nh-m) E 
( 1 DonmNoS, s, 

where E is the total vibrational energy of 
the solid. Since the difference between E 
and the enthalpy , H, is very small (4), we 
may replace E by H in this equation. Differ- 
entiating the resulting equation with respect 
to absolute temperature at constant pres- 
sure and using the fact that 

g&g!E)=a 

we obtain 

:= 

n + m + 3 S 
i ) 
l! n&-m) 

DonmNoS, S, * 

Substituting for Do from Eq. (6) we get 

TABLE I 

DISSOCIATION ENERGIES OF THE PAIR POTENTIAL ENERGY FUNCTIONS OF DIFFERENT METALS 
AND THE RELEVANT QUANTITIES 

Metal 
AI@’ 

(kcal/mole) (Z) m n 

Do from Do from 
Eq. (6) Eq. (2) 

( 10e2’ cal) (lo-” cal) 

Al 16.9 428 4 7 25.338 13.359 4.347 21.283 
Cr 94.5 630 5 7 14.758 11.054 10.479 39.231 
CU 80.8 343 4 7 25.338 13.359 4.554 22.362 
AU 87.6 165 5.5 8 15.711 12.802 11.852 24.244 
Fe 99.4 467 4 7 22.639 11.054 5.666 41.265 
MO 157.1 450 5 7 14.758 11.054 17.275 65.219 
Ag 68.3 225 4.5 7 21.153 13.359 4.724 18.903 
W 199.7 400 5 7 14.758 11.054 21.917 82.904 
Pt 134.8 240 5.5 8 15.711 12.802 18.234 37.308 
Ca 42.1 230 4 6 25.338 14.454 1.818 11.652 
Sr 39.3 147 (4) (6) 25.338 14.454 1.690 10.877 
Ba 42.8 110 (4) (6) 22.639 12.253 1.850 17.768 
Cd 26.8 209 6 7 14.455 13.360 3.906 7.417 
Ni 102.3 450 4 7 25.338 13.359 5.767 28.313 
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CY n+m+3 
,= 2nm[AI-$) + i N,k&J (f-9 

III. Results and Discussion 

Table I shows the cohesive energies (7), 
Debye temperatures (8), values of m and n 
(3), and values of S, and S, (5) for several 
metals. Values of Do calculated from Eqs. 
(6) and (2) are also listed in this table. As 
may be observed, there is a significant dif- 
ference between Do obtained when all inter- 
actions among atoms of the solid are con- 
sidered and those obtained when only 
nearest neighbor interactions are taken into 
account. 

Table II shows the average experimental 
values of (Y/C, (obtained by averaging these 
quantities over the temperature range 25 to 
1000°K) (4), our theoretical values from 

TABLE II 

EXPERIMENTAL AND THEORETICAL VALUES OF (Y/C, 
FOR DIFFERENT METALS (10e6 mole/cal). 

blC,hl,,, 
C~~/Cp)ex,t WCpheor, (McLachlan 

Metal (average) (our results) and Foster) 

Al 4.14 3.21 6.50 
Cr 1.36 2.23 3.02 
CU 2.89 3.06 6.19 
Au 2.45 2.13 4.28 
Fe 1.86 2.49 3.35 
MO 0.97 1.36 1.82 
& 3.25 3.35 6.74 
Tl 4.43 5.10 10.24 
W 0.75 1.07 1.43 
Pt 1.47 1.39 2.78 
Pb 4.43 5.29 10.64 
Be 3.01 3.38 7.04 
Ca 3.37 6.36 12.87 
Cd 5.48 6.99 14.21 
Ni 2.02 2.42 4.89 
Mg 4.44 7.48 15.34 
Zn 5.42 6.75 13.82 
co 2.23 2.43 4.92 
Se 7.43 7.42 - 
Mn 3.48 3.93 - 

Eq. (8), and the theoretical values of 
McLachlan and Foster after correcting 
their final equation. 

As pointed out earlier, the final equation 
obtained by McLachlan and Foster is in er- 
ror. When derived correctly, it should read 

CY 
( 1 

(m + n + 3)W 
c, = theory 12mn AH, ’ (9) 

This is the equation we have used to calcu- 
late the values listed in the last column of 
Table II. It should be noted that even 
though Eq. (8) is independent of whether or 
not interactions beyond nearest neighbors 
are considered, it does not reduce to Eq. (9) 
even if the zero-point energy is neglected. 
This is due to the fact that the energy term, 
u, used by us in the Boltzmann distribution 
function is the total interaction energy of an 
atom per degree of freedom in the solid, 
while that used by McLachlan and Foster is 
an interatomic energy between only two at- 
oms. We feel that the former approach is 
more appropriate. 

It may be seen from Table II that our 
theoretical values for o/C, are in much bet- 
ter agreement with the experimental results 
as compared with those obtained by 
McLachlan and Foster. 
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